Digital Electronics Objectives Part 08
141 . A NAND gate is called a universal logic element because any logic function can be realized by NAND gates alone.
142 . The Boolean expression Aπ΅πΆ + ABΜ Μ Μ Μ CΜ +AΜ BCΜ + AΜ BΜ C is equal to πΜ πΜ +πΜ πΜ +π¨πΜ .
143 . The Boolean expression ABC+AΜ BC+ABΜ C+ABCΜ +AΜ BΜ CΜ + AΜ BΜ CΜ will be equal to πΜ +πΜ +π
144 . The Boolean expression A(A+B+C)(AΜ +B+C)(A+BΜ +C)(A+BΜ +CΜ ) will be same as π(πΜ +π).
145 . The Boolean expression (A+B+C)(A+BΜ +CΜ )(A+BΜ +CΜ )(AΜ +BΜ +C) can be simplified as A.
146 . The expression XY (πYZ + πππ + πππ ) when simplified will become 0.
147 . The expression XY + XYZ + XYπ + πYZ when simplified will become Y.
148 . The expression ABC(ABπΆ + ABΜ C+AΜ BC) when simplified for no assignment of binary values will take the value 1.
149 . The expression AB + Aπ΅ + AπΆ + π΄πΆ will be equal to 1.
150 . The expression of (A + BC + AB) will be πΜ (πΜ +πΜ ).
151 . The complement of (A+B)(B+C)(A+C) will be πΜ
πΜ
+πΜ
πΜ
+πΜ
πΜ
.
152 . The following expression when converted to sum of products from, will become (π¨BC + Aπ©C + AC + BC).
153 . The expression ((AΜ +C)(AΜ +BΜ +CΜ )(A+BΜ ) when converted to sum of product form will become ππΜ +ππΜ +πππ+πππΜ +πΜ ππ+ππΜ .
154 . The expression (A+C)(Aπ΅ + AC)(π΄πΆ + π΅) when converted to sum of products from will become AB + ABC.(πΜ
155 . πΜ
πΜ
+ππΜ
π) is the Boolean expression (in sum of products form) for a logic circuit when will have all output when X = 0, Y = 0 and Z = 1 and a O output for all other input state.
156 . for the logic diagram shown in Fig. 25 the output will be πΏπ π+πΏππ.

157 . XY + Xπ is the Boolean expression in the sum of products from for a logical network which will have a 1 output when
X = 0, Y = 1 , Z = 1
X = 1, Y = 1, Z = β
X = 1, Y = 0, Z = β
X = 1, Y = 1 , Z = 1
158 . Inputs X Y Z Output F1 Output F2 Output F3 000 0 1 001 0 1 1 010 1 1 1 011 1 0 0 100 0 0 0


159 . The sum of the products expression for the above table will be Yπ + πZ.
160 . The product of the sum form of expression for the above truth table will be (X +Y) (π + π).