### Digital Electronics Objectives Part 08

141 . A NAND gate is called a universal logic element because any logic function can be realized by NAND gates alone.

142 . The Boolean expression Aπ΅πΆ + ABΜΜΜΜCΜ+AΜBCΜ + AΜBΜC is equal to πΜ πΜ+πΜπΜ+π¨πΜ.

143 . The Boolean expression ABC+AΜBC+ABΜC+ABCΜ+AΜBΜCΜ + AΜBΜCΜ will be equal to πΜ+πΜ+π

144 . The Boolean expression A(A+B+C)(AΜ+B+C)(A+BΜ+C)(A+BΜ+CΜ) will be same as π(πΜ+π).

145 . The Boolean expression (A+B+C)(A+BΜ+CΜ)(A+BΜ+CΜ)(AΜ+BΜ+C) can be simplified as A.

146 . The expression XY (πYZ + πππ + πππ ) when simplified will become 0.

147 . The expression XY + XYZ + XYπ + πYZ when simplified will become Y.

148 . The expression ABC(ABπΆ + ABΜC+AΜBC) when simplified for no assignment of binary values will take the value 1.

149 . The expression AB + Aπ΅ + AπΆ + π΄πΆ will be equal to 1.

150 . The expression of (A + BC + AB) will be πΜ(πΜ+πΜ).

151 . The complement of (A+B)(B+C)(A+C) will be πΜ
πΜ+πΜπΜ+πΜπΜ.

152 . The following expression when converted to sum of products from, will become (π¨BC + Aπ©C + AC + BC).

153 . The expression ((AΜ+C)(AΜ+BΜ+CΜ)(A+BΜ) when converted to sum of product form will become ππΜ+ππΜ+πππ+πππΜ+πΜ ππ+ππΜ.

154 . The expression (A+C)(Aπ΅ + AC)(π΄πΆ + π΅) when converted to sum of products from will become AB + ABC.(πΜ

155 . πΜπΜ+ππΜπ) is the Boolean expression (in sum of products form) for a logic circuit when will have all output when X = 0, Y = 0 and Z = 1 and a O output for all other input state.

156 . for the logic diagram shown in Fig. 25 the output will be πΏπ π+πΏππ.

157 . XY + Xπ is the Boolean expression in the sum of products from for a logical network which will have a 1 output when
X = 0, Y = 1 , Z = 1
X = 1, Y = 1, Z = β
X = 1, Y = 0, Z = β
X = 1, Y = 1 , Z = 1

158 .
Inputs X Y Z Output F1 Output F2 Output F3 000 0 1 001 0 1 1 010 1 1 1 011 1 0 0 100 0 0 0

159 . The sum of the products expression for the above table will be Yπ + πZ.

160 . The product of the sum form of expression for the above truth table will be (X +Y) (π + π).