### Digital Electronics Objectives Part 08

**141 .** A NAND gate is called a universal logic element because** any logic function can be realized by NAND gates alone.**

**142 . ** The Boolean expression Aπ΅πΆ + ABΜ
Μ
Μ
Μ
CΜ
+AΜ
BCΜ
+ AΜ
BΜ
C is equal to **πΜ
πΜ
+πΜ
πΜ
+π¨πΜ
.**

**143 . ** The Boolean expression ABC+AΜ
BC+ABΜ
C+ABCΜ
+AΜ
BΜ
CΜ
+ AΜ
BΜ
CΜ
will be equal to** πΜ
+πΜ
+π**

**144 .** The Boolean expression A(A+B+C)(AΜ
+B+C)(A+BΜ
+C)(A+BΜ
+CΜ
) will be same as **π(πΜ
+π).**

**145 . ** The Boolean expression (A+B+C)(A+BΜ
+CΜ
)(A+BΜ
+CΜ
)(AΜ
+BΜ
+C) can be simplified as **A.**

**146 . ** The expression XY (πYZ + πππ + πππ ) when simplified will become **0.**

**147 . ** The expression XY + XYZ + XYπ + πYZ when simplified will become **Y.**

**148 . ** The expression ABC(ABπΆ + ABΜ
C+AΜ
BC) when simplified for no assignment of binary values will take the value **1.**

**149 . ** The expression AB + Aπ΅ + AπΆ + π΄πΆ will be equal to** 1.**

**150 .** The expression of (A + BC + AB) will be** πΜ
(πΜ
+πΜ
).**

**151 .** The complement of (A+B)(B+C)(A+C) will be **πΜ
πΜ
+πΜ
πΜ
+πΜ
πΜ
.**

**152 .** The following expression when converted to sum of products from, will become (**π¨BC + Aπ©C + AC + BC).**

**153 . ** The expression ((AΜ
+C)(AΜ
+BΜ
+CΜ
)(A+BΜ
) when converted to sum of product form will become **ππΜ
+ππΜ
+πππ+πππΜ
+πΜ
ππ+ππΜ
.**

**154 .** The expression (A+C)(Aπ΅ + AC)(π΄πΆ + π΅) when converted to sum of products from will become **AB +** **ABC.(πΜ
**

**155 .** **πΜ
πΜ
+ππΜ
π) **is the Boolean expression (in sum of products form) for a logic circuit when will have all output when X = 0, Y = 0 and Z = 1 and a O output for all other input state.

**156 . ** for the logic diagram shown in Fig. 25 the output will be** πΏπ π+πΏππ.**

**157 .** XY + Xπ is the Boolean expression in the sum of products from for a logical network which will have a 1 output when

X = 0, Y = 1 , Z = 1

X = 1, Y = 1, Z = **β**

X = 1, Y = 0, Z =** β**

X = 1, Y = 1 , Z = 1

**158 . ** Inputs

**X Y Z**Output F1 Output F2 Output F3 000 0 1 001 0 1 1 010 1 1 1 011 1 0 0 100 0 0 0

**159 . ** The sum of the products expression for the above table will be** Yπ + πZ.**

**160 . ** The product of the sum form of expression for the above truth table will be** (X +Y)** **(π + π).**